Top 3 Prototyping Challenges in Robotics

Brian H. Powell
Principal Software Architect
LabVIEW Robotics

K to Rocket Science

LEGO Education WeDo

CERN Large Hadron Collider

Robotics Technology is an Emerging Priority

National needs

Elderly and disabled

STEM Education

Improvements in core technologies

Robotics Continuum

LabVIEW Robotics

LEGO ® MINDSTORMS® NXT

LabVIEW for LEGO MINDSTORMS

University

Industry

LEGO® WeDo® powered by LabVIEW

Kindergarten – 8

FIRST Adoption of NI Technology

FIRST LEGO League

FIRST Tech Challenge

FIRST Robotics

Franklin W. Olin College

Dr. David Barrett

"The growing robotics industry badly needs an industrial-grade, hardened, richly supported software development system to build intelligent, autonomous, mobile robots that can sense, think, and act in the complex real world around them."

Robot-friendly development system needs:

Data-Flow!

Cognition Code

Mission Execution Code

Real Time Control Code

Sensor Code

Motor Code

Real World (Physics)

Top 3 Prototyping Challenges

1

Designing intelligent and reusable software

Pre Launch
System Check
Mission
Download
Mission
Planning
Mission
Download
Mission
Planning
Mission
Download
Mission
Download
Mission
Download
Mission
Planning
Mission
Download
Mission
Download
Mission
Planning
Mission
Download
Mission
Download
Mission
Mission
Download
Mission
Data Recovery

2

Translating algorithms to embedded hardware

3

Connecting to the real-world

Prototyping Challenge #1:

Designing intelligent & reusable software

Robot application design pattern developed by students at Franklin W. Olin College

Prototyping Challenge #2:

Translating algorithms to embedded hardware

Sense-Think-Act flow needs lots of code:

Non-abstract/Easy to Understand Control Data Flow

Prototyping Challenge #3:

Connecting to the real-world

NASA Langley Research Robot

System Overview (Sensors)

FLIR Photon 320™ Infrared Imager

Fujinon C22x17R2D-QP1™ TeleZoom CCTV

Videre Design Stereo Cameras

SICK LD-OEM1000™ Laser Ranger-finder

Microstrain 3DM-GX1

Differential GP Trimble AG DGPS 132

Directed Perception PTU-D300 Pan-tilt

Raynox RA5237™ Omnidirectional Camera Mirror

Laser Range FinderHokuyo URG-

SENSE: Perception:

Micron Sonar

BlueviewP900E-20 Imaging Sonar

Tritech SeaKing AUV Side Scan Sonar System

Cruz-Pro D110
Digital DSP depth sounder

VexilarLPS-1
Digital Depth Sounder

Point Gray Bumble Bee

NI 1722 Smart Camera

Perception Engine: "What is around me?"

SENSE: Localization

TrackLink 10000 Integrated USBL Acoustic Tracking and Communication Systems

MARINS
Inertial Navigation System

OS3000 Digital Compass

FSA03 - FALCOM GPS Smart antenna

ASM POSITILT®Incinometer

Depth Transducer 2400 Slimline Borehole

SENSE: Vehicle Status

Bilge Sensors YSBS-2

Internal Air Temperature/ Pressure

Battery Voltage

Actuator Force(s)

Joint Position (s)

Thruster Speed(s)

Vehicle Status Engine: "How Am I?"

Think

Cognition Engine: Finite State Machine

Mission Definition File

Localization Engine: "Where am I?"

Perception Engine: "What is around me?"

Act

Act

Direct Drive

Shadow

Lead Screw Drive

Hughes

McKibben

Micro Hydraulic

Festo

SMA, PZT, etc.

Top 3 Prototyping Challenges

1

Designing intelligent and reusable software

Pre Launch
System Check

Mission
Planning

Mission
Data Recovery

2

Translating algorithms to embedded hardware

3

Connecting to the real-world

